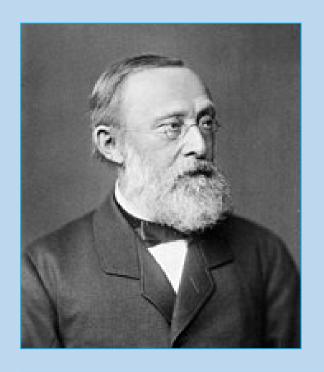


World Zoonosis Day 6th July, 2021

Organized by


Indian Federation of Animal Health Companies (INFAH)

One health & emerging zoonoses

Dr. R. P. Kolhe
Assistant Professor
Department of Veterinary Public Health
KNP College of Veterinary Science, Shirwal
Maharashtra Animal & Fishery Sciences University Nagpur

BETWEEN ANIMAL AND HUMAN MEDICINE, THERE IS NO DIVIDING LINE-NOR SHOULD THERE BE.

- RUDOLF VIRCHOW -

IMPORTANCE OF ONE MEDICINE – ONE HEALTH CONCEPT -

- Shared zoonoses from livestock and pets
- Food safety
- Wild life reservoirs of human pathogens
- Global Environment & Climate change
- Antimicrobial resistance
- Food Security
- Comparative medicine & Biomedical research

"There is no difference of paradigm between human and veterinary medicine. Both sciences share a common body of knowledge in anatomy, physiology, pathology, on the origines of diseases in all species."

Schwabe C. (1964, 1984 3rd Edition): Veterinary Medicine and Human Health. Williams and Wilkins, Baltimore

DISEASES OF PUBLIC HEALTH IMPORTANCE (WHO, 2008)

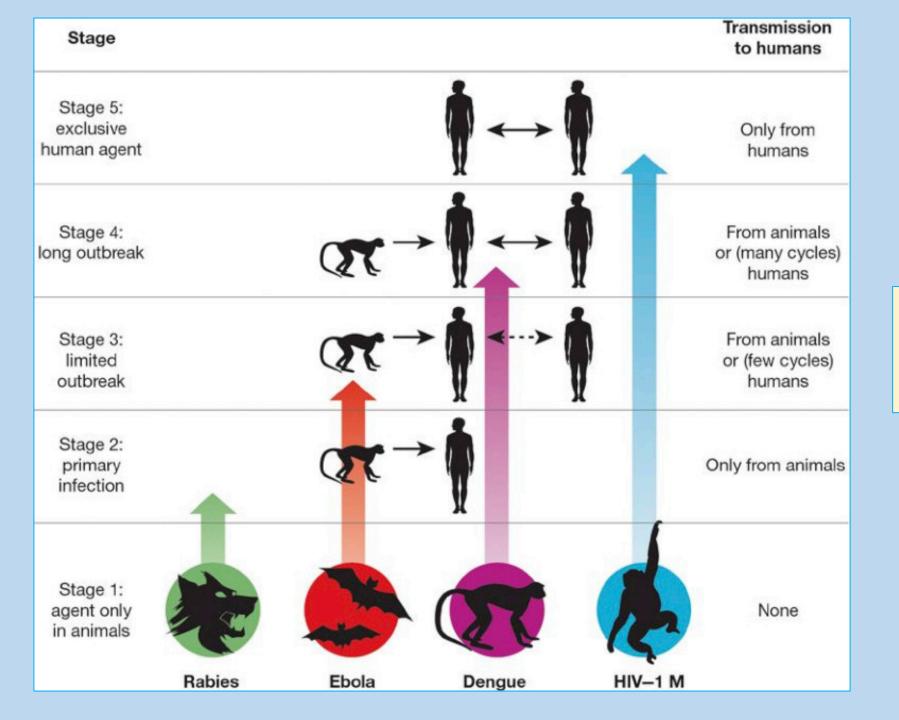
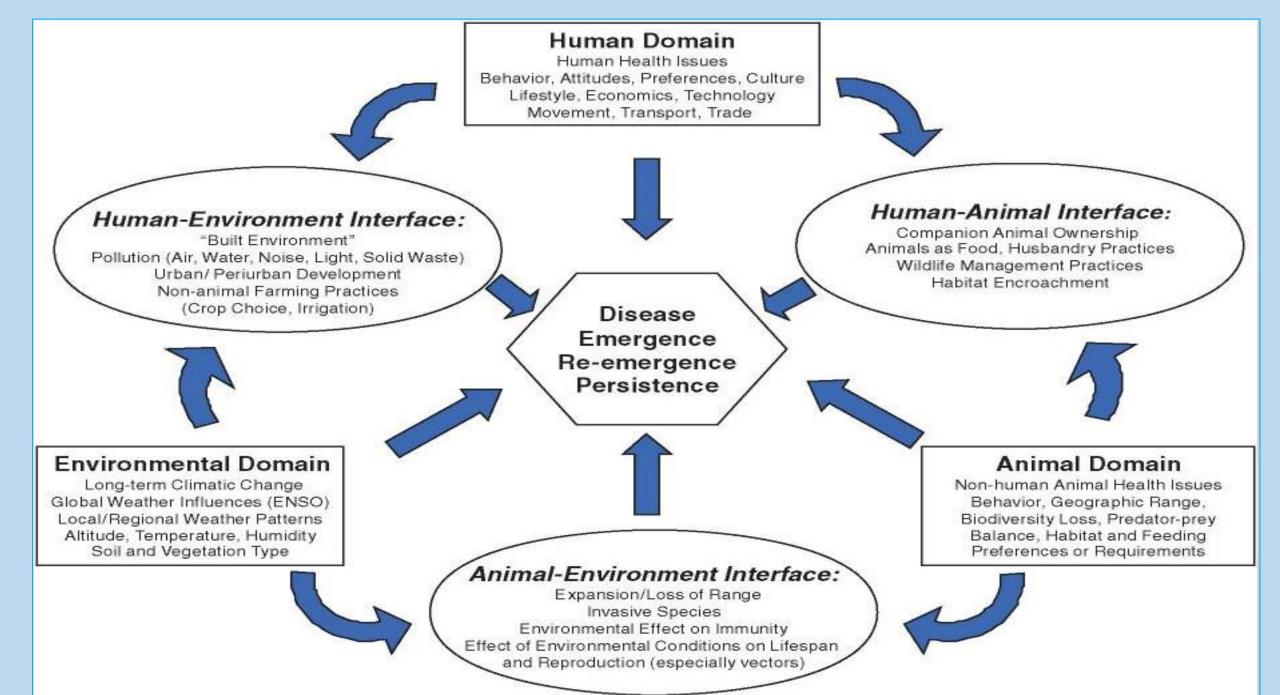
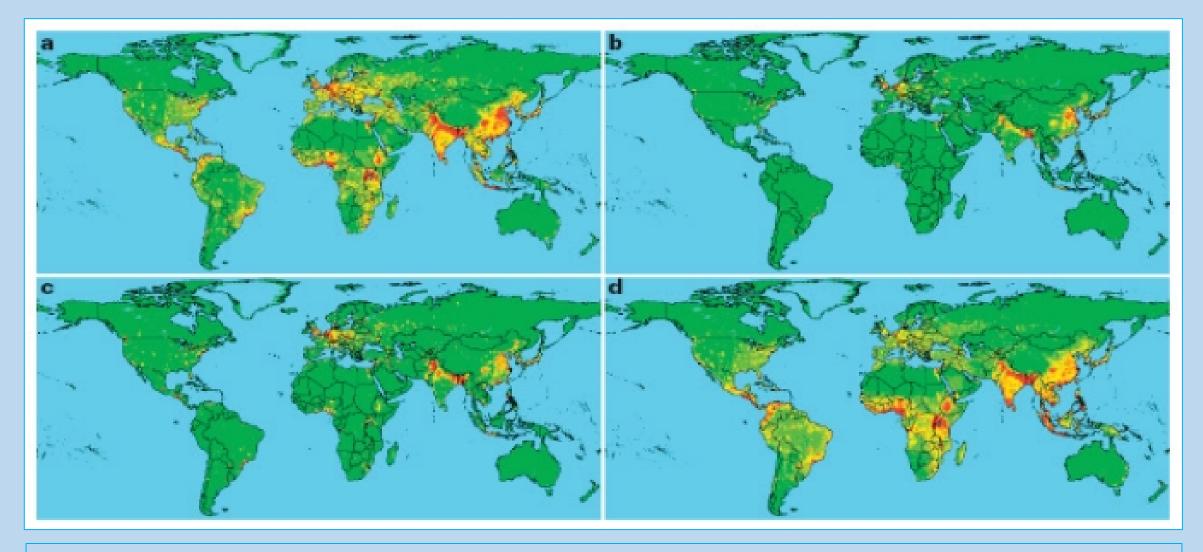

- 25% of all globally deaths are caused by microbes.
- 1,415 species of infectious organisms known to be pathogenic to humans.
- 217 viruses and prions,
- 538 bacteria and rickettsia,
- 307 fungi,
- 66 protozoa and
- 287 helminths.
- 868 (61%) of all known are zoonoses.
- humans as primary reservoir for only 3% of them.
- 175 diseases considered to be emerging,
- 132 (75%) are zoonotic.

	Table. Newly discovered microbes of public health importance			
Year	Microbes Disease			
1975	Parvovirus B-19	Fifth disease		
1976	Cryptosporidium parvum	Cryptosporidiosis		
1977	Ebola virus	Ebola haemorrhagic fever		
1977	Legionella pneumophila	Legionnaire's disease		
1977	Hantaan virus	Korean haemorrhagic fever		
1977	Campylobacter jejuni	Gastroenteritis (food poisoning)		
1980	Human T-lymphotropic virus I (HTLV-I)	T-cell leukemia/lymohoma		
1981	Toxin producing strains of Staphylococcus aureus(golden staph)	Various infections		
1982	Escherichia coli O157:H7	Food poisoning		
1982	HTLV-II	Lymphoma		
1982	Borrelia burgdorferi	Lyme disease		
1983	Human immunodeficiency virus	AIDS		
1983	Helicobacter pylori	Duodenal and gastric ulcer and stomach cancer		
1985	Enterocytozoon bieneusi	Microsporidiosis diarrhoea		
1986	Cyclospora cayatanensis	Diarrhoea		
1988	Hepatitis E virus	Hepatitis		
1989	Ehrilichia chafeensis	Human monocytic Ehrilichiosis		
1989	Hepatitis C virus	Liver cancer (hepatocellular carcinoma)		
1991	Guanarito virus	Venezuelan haemorrhagic fever		
1991	Encephalitozoon hellem			
1991	New species of Babesia	Babesiosis haemolytic disease		
1992	Vibrio cholerae O139	Cholera		
1992	Bartonella henselae	Bacteremia, endocarditis, bacillary angiomatosis and peliosis hepatis		
1993	Sin nombre virus	Hantavirus cardiopulmonary syndrome (HCPS), aka Four corners virus or Navajo flu		
1993	Encephalitozoon cunculi			
1994	Sabia virus			
1995	Human herpes virus 8(HHV-8)	Kaposi's sarcoma		
1999	Nipah virus ^a			
2002	SARS coronavirus ^a	Severe acute respiratory syndrome		
2003	Influenza A (H5N1) ^a	Avian Influenza		
2009	Influenza A(H1N1)	Swine Flu		
2012	Novel coronavirus	Severe respiratory infection		
-	Adapted from WHO, 2005 ⁴ *First identified in Asia.			


Prominent outbreaks, epidemics, and pandemics of the century

Year(s)	Pathogen	Geographic location	Cases/mortality	Other notes
1918–1920	Influenza	Worldwide	500 million cases and 30 to 100	The Spanish flu claimed the lives of 2–5% of world's
	(Spanish flu)		million deaths	population, far exceeding the death toll of WWI.
1957–1958	Influenza	Worldwide	1 to 2 million deaths	Accelerated development of a vaccine limited the spread of
	(Asian flu)			the responsible influenza strain.
1968–1969	Influenza	Worldwide	500,000 to 2 million deaths	The Hong Kong flu was the first virus to spread extensively
	(Hong Kong flu)			due to air travel.
1960-present	HIV/AIDS	Worldwide, primarily	70 million cases and 35 million	HIV was first identified in 1983. The earliest known case
		Africa	deaths	came from a blood sample collected in 1959.
1961-present	Cholera	Worldwide	1.4 to 4 million annual cases and	The seventh cholera pandemic began in South Asia in 1961.
			21,000 to 143,000 annual deaths	Recent notable outbreaks include those in Zimbabwe from
				2008 to 2009, Haiti from 2010-present, and Yemen from
				2016-present.
1974	Smallpox	India	130,000 cases and 26,000 deaths	One of the worst smallpox epidemics of the twentieth
				century occurred just 3 years before the disease was
				eradicated.
1994	Plague	India	693 suspected cases and 56	The outbreak originated in Surat, India. Within days,
			deaths	hundreds of thousands of the city's 1.6 million residents
				fled, spreading the disease across five states.
2002–2003	SARS	Originated in China,	8,098 cases and 774 deaths	International business travel allowed the SARS virus to
		spread to 37 countries		spread quickly across continents.
2009	Influenza	Worldwide	284,000 deaths	Many public and private facilities in Mexico closed; The
	(Swine flu)			pork industry also suffered losses, even though eating pork
				products posed no risk.

2014–2016	Ebola	West Africa, primarily Guinea, Liberia, and Sierra Leone	28,600 cases and 11,325 deaths reported (likely underestimates)	300,000 doses of an experimental Ebola vaccine were subsequently stockpiled.
2015- present	Zika	The Americas, primarily Brazil	Unknown number of cases and 0 deaths reported	The Zika epidemic has resulted in few, if any, deaths. However, birth defects resulting from infection in pregnant women occurred frequently, which prompted some governments to encourage delaying pregnancy for as long as 2 years.
2016	Dengue	Worldwide	100 million cases and 38,000 deaths	Dengue outbreaks occur periodically in affected regions. 2016 was notable for the unusual scale of outbreaks across the globe.
2017	Plague	Madagascar	2,417 cases and 209 deaths	Plague is endemic in Madagascar, but an increase in pneumonic plague, which can be transmitted from human to human, was associated with the recent spike in cases.
2019	COVID-19	Global spread	18,23,19, 261 cases and 39,54,324 deaths	New variants are evolving, role of animals in the epidemiology is unknown?



The 5 stages through which pathogens of animals evolve to cause diseases confined to humans. (Wolfe et al., 2007)

Table 1. Factors affecting infectious disease emergence

Table 1. Factors affecting infectious disease emergence			
Factor	Specific factor	Disease emergence	
Ecological changes	 Climate change Changes in water ecosystems Deforestation/reforestation Flood/drought Famine 	 Rift Valley fever Argentine haemorrhagic fever, Hantaan or Korean haemorrhagic fever Hantavirus pulmonary syndrome in the southwestern United States of America 	
Human behavior international travel and commerce	 War Population migration (movement from rural areas to cities) Economic impoverishment Urban decay Factors in human behaviour (such as the commercial sex trade, outdoor recreation and activities) Worldwide movement of goods and people Air travel 	 HIV and other sexually transmitted diseases Dengue Rat-borne hantaviruses Introduction of cholera into South America, dissemination of O139 (non-O1) cholera bacteria (via ships) 	
Technology and industry Developments (food)	 Globalization of food supplies Changes in food processing and packaging 	 Food production processes: haemolytic uraemic syndrome certain Escherichia coli strains from cattle contaminating meat and other food products), bovine spongiform encephalopathy, Nipah virus (pigs), avian influenza, severe acute respiratory syndrome (probably) 	
Technology and industry Developments (health care)	 New medical devices Organ or tissue transplantation Drugs causing immunosuppression Widespread use of antibiotics 	EbolaHIVCreutzfeldt-Jakob	
Microbial adaptation and change	Microbial evolution as a response to selection in the environment	 'Antigenic drift' in influenza virus Possibly genetic changes in severe acute respiratory syndrome, coronavirus in humans Development of antimicrobial resistance (HIV, antibiotic resistance in numerous bacterial species, multi-drug-resistant tu- berculosis, chloroquine-resistant malaria) 	
Breakdown of the host's defenses	ImmunodepressionImunnodeficiency resulting from HIV infection	 Mycobacterium bovis Listeria monocytogenes in humans	
Breakdown in public health or control measures	Lack ofor inadequate sanitation and vector control measures	 Tuberculosis (mainly in the United States of America) Cholera in refugee camps in Africa, resurgence of diphtheria in the former Soviet republic and Eastern Europe in the 1990s 	

Global distribution of the relative risk of an EID event

Maps are derived for <u>EID</u> events caused by (a) zoonotic pathogens from wildlife; (b) zoonotic pathogens from non-wildlife; (c) drug-resistant pathogens; and (d) vector-borne pathogens. Green corresponds to lower values; red to higher values.

WHO's Blueprint list of priority diseases requiring urgent R&D attention, 2018

Disease	Description	Availability of biomedical
		countermeasures
Crimean-Congo	Hemorrhagic fever caused by virus transmitted primarily through	No vaccine available;
Hemorrhagic fever	ticks and livestock, with case-fatality rate of up to 40%. Human-	Ribavirin (antiviral) provides some
(CCHF)	to-human transmission possible.	treatment benefit
Ebola virus disease	Hemorrhagic fever caused by virus transmitted from wild animals,	Experimental vaccine and treatments
	with case-fatality rate of up to 90% (50% is average). Human-to-	available
	human transmission is possible.	
Marburg virus disease	Hemorrhagic fever caused by virus transmitted by fruit bats, with	No vaccine available
	case-fatality rate of up to 88% (50% is average). Human-to-human	
	transmission is possible.	
Lassa fever	Hemorrhagic fever caused by virus transmitted from items that	No vaccine available;
	have contacted rodent urine or feces, with case-fatality rate of 15%	Vaccine development funded by The
	in severe cases (1% overall). Human-to-human transmission is	Coalition for Epidemic Preparedness
	possible.	InnovationsCEPI
Middle East respiratory	Respiratory disease caused by a coronavirus transmitted by camels	No vaccine available;
syndrome coronavirus	and humans, with case-fatality rate of 35%.	Vaccine development funded by CEPI
(MERS-CoV)		

Severe acute respiratory syndrome (SARS)	Respiratory disease caused by a coronavirus transmitted from human to human and from an unknown animal reservoir (possibly bats), with a case-fatality rate of 10%.	No vaccine available; experimental vaccines are under development
Nipah and henipaviral diseases	Disease caused by a virus transmitted by fruit bats, pigs, and humans; can manifest as an acute respiratory syndrome or encephalitis. The case-fatality rate is estimated at 40 to 75% and depends on local capabilities.	Vaccine development funded by CEPI
Rift Valley fever	Disease caused by a virus transmitted by contact with the blood or organs of infected animals, or by mosquitos. In severe cases, can manifest in an ocular infection, as meningoencephalitis, or as a hemorrhagic fever. Up to 50% case-fatality rate in patients with hemorrhagic fever. No human-to-human transmission reported.	An experimental, unlicensed vaccine exists but is not commercially available; CEPI has an open call for proposals for development of a new vaccine
Zika	Disease caused by a flavivirus transmitted by <i>Aedes aegypti</i> mosquitoes. Can result in microcephaly in infants born by infected mothers and in Guillain-Barré syndrome. Human-to-human transmission is possible.	No vaccine available
Disease X (representing pathogens currently unknown to cause human disease and requiring cross-cutting preparedness)	N/A	CEPI is funding the development of institutional and technical platforms that allow for rapid R&D in response to outbreaks of any number of pathogens for which vaccines do not yet exist.

What is One Health?

It is a collaborative, multisectoral, and transdisciplinary approach - working at the local, regional, national, and global levels - with the goal of achieving optimal health outcomes recognizing the interconnection between people, animals, plants, and their shared environment.

The Foundation of One Health

- ✓ Communication
- ✓ Coordination
- ✓ Collaboration

Among human, animal, environmental health, and other relevant partners.

HUMAN HEALTH IMPACT

Improved Health and Global Security

Reduced Anthropogenic Effects, Preservation of Ecosystem Services Food Security, Disease Control and Prevention, Improved Livelihoods

ONE HEALTH

ENVIRONMENTAL IMPACT

Greater sustainability of natural resources

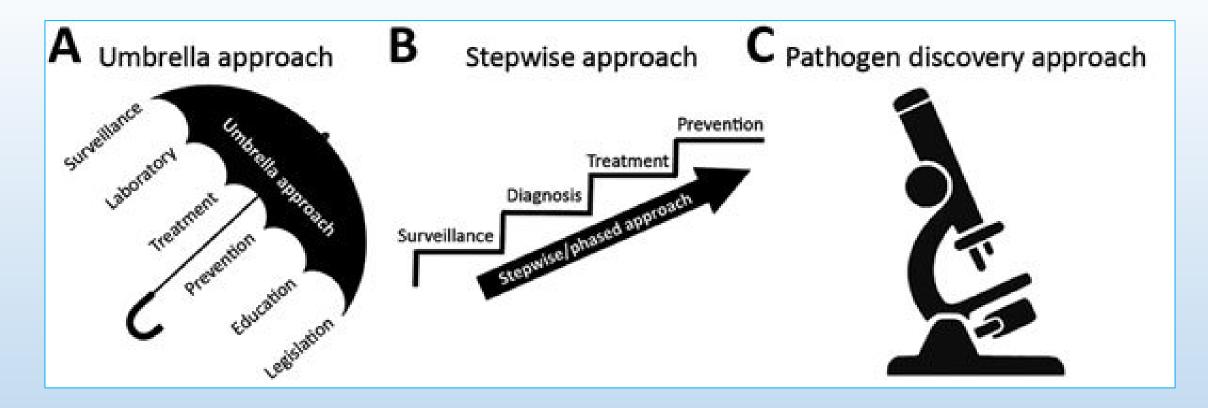
ALTH ANIMAL HEALTH

Decreased disease transmission at wildlife/livestock interface

Improved livestock health and productivity, greater wildlife biodiversity

One Health initiatives

Time	Event	
Approximately 400	Hippocrates urged physicians that all aspects of their patient's lives need to be considered including their environment	
BCE		
1855	Rudolph Virchow first used the term 'zoonosis' for infections acquired from animals	
1971	An international group, Wildlife Trust, formed by naturalist Gerald Durrell. The Wildlife Trust is now known as EcoHealth Alliance	
1984	Calvin Schwabe, veterinary epidemiologist coined the term 'One Medicine'	
2004	Human Animal Infections and Risk Surveillance (HAIRS) begins operation in the UK	
2004	Manhattan Principles are defined in a meeting on 'One World One Health' convened by the	
	Wildlife Conservation Society	
2006	First International Ministerial Conference on Avian Influenza and Pandemic Influenza (IMCAPI) Beijng, PR China	
2006	The Global Early Warning System for major Animal Diseases (GLEWS) developed and implemented by FAO, OIE and WHO	
2008	American Veterinary Medicine Association (AVMA) was instrumental in forming the One Health Initiative Taskforce (OHITF)	
2008	The South Africa Centre for Infectious Disease Surveillance (SACIDS) established as a One Health Virtual Centre linking research	
	institutions in Tanzania, DRC, Mozambique, Zambia and South Africa	
2008	The One Health Initiative (OHI) www.onehealthinitiative.com, a major internet based communications resource launched	
2008	FAO, OIE, WHO, UNICEF, World Bank and UNSIC produce collaborative document 'Contributing to One World, One Health. A	
	Strategic Framework for Reducing Risks of Infectious Disease at the Animal–Human-Ecosystem Interface	
2010	Tripartite Concept Strategy—An FAO-OIE-WHO collaboration	
2010	World Bank publishes 'People, Pathogens and Our Planet: Vol 1. Toward a One Health Approach for Controlling Zoonotic Disease.	
2011	First International One Health Congress Melbourne, Australia	
2011	One Health Central and Eastern Africa (OHCEA) formed as a network of 14 public health and veterinary institutions in Ethiopia,	
	Uganda, Kenya, Tanzania, DRCongo and Rwanda	
2013	The Gates Foundation calls for One Health research through the Grand Challenge program	
2014	One Health Summer Schools available in Denmark, England and Australia. Masters in One Health offered in USA and UK, and a	
	doctorate in the USA	
2019	One Health India Conference and Delhi Declaration	


Delhi Declaration-2019 recommended sustainable 10 point OHR

- 1. Review, update and document the current disease burden(s) resulting from zoonotic diseases and AMR.
- 2. Identify the priority area(s) of concerns with respect to diseases.
- 3. Promote basic and applied research to understand the mechanism of virulence, infections and its transmissions.
- 4. Capacity building through engagement and training of manpower including students, scientists, researchers, primary respondents, and health care professionals.
- 5. Capacity building and improvement of related infrastructure for research, diagnosis, and health care system(s) to enable
- 6. Share information on existing and evolving disease burdens, challenges, research outcome and outputs and promote exchange of resources.

- 7. Explore opportunities and promote partnership through scientific collaborations between public and private organizations.
- 8. Evolve with practical governance, policy mechanism(s) and regulation(s) to define the role of Government and other stakeholders on responsibly regulating/ dealing with One Health related activities.
- 9. Incentivize the OHR through dedicated funding, rewards mechanisms as well as due protection of intellectual rights, wherever applicable.
- 10. Create and implement a One Health communication and outreach plan for all stakeholders including the public, through print and online platforms, workshops, training, and conference like this (One Health India Conference) to provide a platform for mass awareness helping a nation to ensure its own health security.

Strategic framework for zoonoses management using One Health approach

- Prioritization of zoonotic diseases
- Assessment of zoonotic disease burden
- Zoonotic disease surveillance
- Joint Human Animal outbreak response
- Strengthening laboratory systems in public health and veterinary sectors
- Real time implementation of prevention and control strategies

Three program approaches for implementing integrated zoonotic disease detection, prevention, and control programs.

- A- Comprehensive (umbrella) approach, designed to accelerate collaboration and impact.
- B- Phased (stepwise) approach in which each step building on prior developed program areas and capacities.
- C- Pathogen discovery approach, based on the necessity of early intersectoral collaboration to generate knowledge in the context of discovering an emerging zoonotic pathogen.

Challenges in implementation of OH

- commercial interest,
- lack of inter-sectoral communication,
- lack of inter-sectoral trust,
- silos in education and
- siloed funding.

Let's communicate, coordinate and collaborate for a common goal

Wishing you all a very happy

World Zoonosis Day 2021

Thanks